
XML Parsing
and Processing
Lecture 7 (A)

+ NodeJS XML Parsing and Processing

XML Advance

2

Learning Objectives

n Learn some Node.js classes and methods
available for parsing and processing XML
documents

n We will also look at some Perl classes and
methods available for parsing and processing
XML documents

n NOTE: you will NOT be examined on any Perl
material

n Look at some example code using these
modules

3

n In the context of this unit:
n XML is an important set of Internet technologies for

use in different solutions in different areas
n A major part of developing an XML solution is to

design and implement software that can process the
information in XML documents automatically (i.e.
XML applications/programs)

n Thus, we must learn to parse and process XML
documents

Learning Objectives

4

n In the context of this unit:
n Node.js and Perl have external modules to assist

with such tasks, so we introduce them as examples
of tools available in programming languages to
handle parsing and processing XML documents

Learning Objectives

5

n What is a parser?
n Why do we need to parse?
n The XML::Parser module in Perl
n The XML::DOM module in Perl
n The DOMParser module in Node.js
n The XMLSerializer module in Node.js
n DOM methods available for parsing and

processing XML documents

Learning Outline

What is a Parser?

n Parsing is more formally known as syntactic
analysis

n In computer science and linguistics, parsing is
the process of analyzing a sequence of tokens
to determine their grammatical structure with
respect to a given formal grammar

6

What is a Parser?

n The word parser in compiler parlance, implies a
module that reads and interprets the source
code

n In a compiler, the parser creates a parse tree,
which is an in-memory representation of the
source code

n The second half of the compiler – known as the
backend – uses parse trees to generate object
files (compiled modules)

7

Parsers in XML

n A parser is one of the most important XML tools
n Every XML application includes a parser
n The parser is positioned between the XML

application and XML documents
n Its goal is to shield the developer from the

intricacies of the XML syntax
n It is a low-level tool that is almost invisible to

everybody but programmers

8

Why Do You Need Parsers?

n To this point, we have used XML within XML
environments??

n However, we also need to be able to design and
implement software that can process the
information in XML documents (i.e. write XML
applications)
n That is, so that Web software operates over the

Internet automatically

9

Why Do You Need Parsers?

n Imagine you are given an XML file with product
information, including product code, description,
prices, suppliers, etc.

n You are asked to write an application to convert
the prices from dollars to Euros

n How to do it?
n http://www.informit.com/articles/article.aspx?p=29389

10

First Approach

n At first, it looks like a simple assignment
n Algorithm:

Loop through the price list
Multiply each price by the exchange
rate

11

What About XML Syntax?

n Yet on closer consideration, you need to
remember the prices are in an XML document

n To loop through the prices means to read the
entire document and interpret the XML syntax

n That doesn't seem too difficult because
elements in the document are tagged
n They are designated by an element name inside

angled brackets

12

Do You Remember Entities?

n However, the XML syntax is not just about
angled brackets

n There might be entities in the price list
n Therefore, the application must read and interpret

the Document Type Definition or Schema to be able
to resolve entities

n While it reads the DTD/Schema, it might as well
read element definitions and validate the
document
n This is required to ensure the correct information is

being accessed

13

What About Other XML Features?

n What about Character encodings, namespaces?
n And do not forget to consider errors!!

n How would the software recover from a missing
closing tag?

14

How “simple” is XML Syntax?

n Yet XML has an eXtensible syntax so XML
applications have to be ready to cope with many
of these issues – and possibly more

n As it turns out, writing a software library to
decode XML files may be a one month long
assignment

n If you were to write such a library, after one
month you would have written your own parser
and more

15

n So the question has to be asked:
n Is it productive to spend one month writing a parser

library when you need only a quarter of a day's work
to actually process the data?

n Of course not!
n It is more sensible to download a parser from

the Internet or use one that ships with your
favourite development tool

16

How “simple” is XML Syntax?

17

XML Parsing

n As just mentioned, before your program is able
to do anything with the data in an XML
document, it must first
n Parse the document and extract the relevant data
n Store the relevant data in an appropriate data

structure for a program to utilize

18

XML::Parser

n In Perl, XML::Parser is a basic module that
can be used to parse an XML document

n It is based on James Clark’s Expat library
n Expat is a very important C library used extensively

to implement XML parsers
n Most of the low level details of Expat are hidden in a

parser such as XML::Parser
n http://www.jclark.com/xml/expat.html

19

n Expat and XML::Parser are non-validating
parsers
n That is, the parser does not check a document

against any Document Type Definition or Schema
n It only checks that the document is well-formed (i.e.

that it is properly marked up according to XML syntax
rules)

XML::Parser

20

Event Handlers in XML::Parser

n Perl’s XML::Parser is event-driven
n It works by allowing you to specify event handlers for

different situations the Parser might encounter during
parsing

n You do not have to deal with the low-level character-
by-character parsing, you only specify what happens
when the parser encounters certain “components” of
an XML document (eg: a start tag)

http://search.cpan.org/~msergeant/XML-Parser-2.36/Parser.pm

21

XML::Parser Processing

XML
Document

Application (your code)

XML::Parser API
input

Specify event handlers

Event Handlers

call

22Example XML Document
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="poetry.xsl"?>
<poetry>

<anthology>
<poem>

<title>The SICK ROSE</title>
<author>William Blake</author>
<stanza>

<line>O Rose thou art sick.</line>
<line>The invisible worm,</line>
<line>That flies in the night</line>
<line>In the howling storm,</line>

</stanza>
<stanza>

<line></line>
<line></line>
<line />
<line />

</stanza>
</poem>

</anthology>
</poetry>

23

An Example Using XML::Parser
use XML::Parser;

my @tags;
my $parser = new XML::Parser;
$parser->setHandlers (Start => \&my_start_handler);

die "Unable to parse XML document\n"
unless $parser->parsefile("poetry.xml");

Do something with @tags

sub my_start_handler
{

my ($expat, $item, %attr) = @_;
print "Encountered node type: $item \n";
push (@tags, $item);

}

Every time a start tag is encountered
call subroutine &my_start_handler

&my_start_handler will take node-
type value from subroutine parameter
list @_, print a message, and put the
node-type into the @tags array

24

Node.js XML Parser

n In Node.js, the node-xml module provides an
event-driven interface xml.SaxParser() to
parse XML documents

n There are numerous methods to assist parsing
n More information on the parser, methods, and an

example parser are available at:
n https://www.npmjs.com/package/node-xml

25

n Like Perl’s XML::Parser, node-xml is a non-
validating parser
n That is, it does not check a document against any

DTD or Schema
n It only checks that the document is well-formed (i.e.

that it is properly marked up according to XML syntax
rules)

Non-Validating Parsers

26

No Data Structures

n node-xml and Perl’s XML::Parser do not
construct a useful object or data structure to
represent the XML document
n It is left to the programmer using the parser to

abstract any structure and access the required data
n We mentioned earlier that node-xml and Perl’s
XML::Parser are event-driven parsers

n So when using these parsers, the programmer thinks
more in terms of the events that occur rather than the
objects to be manipulated

27

DOM vs SAX

n Parsers that are event driven offer a Simple API
for XML (SAX) approach to processing XML
documents

n The Document Object Model (DOM) is an
alternative approach to processing XML
documents, where an object tree representation
is constructed based on the XML definition

28

XML::DOM

n Perl’s XML::DOM is an alternative module to
XML::Parser, that does construct a useful
object / data structure for processing and
manipulation purposes
n http://search.cpan.org/~tjmather/XML-DOM-1.45/

n Node.js has DOM parser modules
n xmldom
n libxmljs-dom

29

Node.js XML DOM Parser

n In Node.js, the xmldom module provides a DOM
interface xml.DOMParser() to parse and
process XML documents

n There are numerous methods to assist parsing
and processing

n More information on such methods is available
at:
n https://www.npmjs.com/package/xmldom

30

In This Unit...

n In the tutorials for this unit, we will be using the
Perl XML::DOM and the Node.js xmldom
modules instead of Perl’s XML::Parser and
node-xml
n node-xml may prove helpful for the 2nd assignment
n However, be aware that the Node.js XML libraries are

not as mature as Perl XML libraries, and there is not
as much documentation for the use of Node.js XML
libraries

n Perl’s XML libraries are simple and well supported

31

The Document Object Model (DOM)

n The Document Object Model (DOM) is a cross-
platform and language-independent Application
Programming Interface (API) for representing
and interacting with objects in HTML, XHTML
and XML

n The DOM describes the content, structure and
style of documents, by putting them into
specified objects

32

n The objects of every document are organized in
a tree-like structure called the DOM tree

n DOM is currently a W3C standard
n So regardless of the language being used for

development of an application, objects in the
DOM tree may be accessed and manipulated by
using appropriate methods available which
comply with the W3C specifications

The Document Object Model (DOM)

n The DOM is an interface that allows an
application to discover information about an
XML document by navigating around it
n Many XML parsers implement the DOM interface

33

The Document Object Model (DOM)

n In the DOM specification, the term "document" is used
in the broad sense
n XML is used as a way of representing many different kinds of

information that may be stored in diverse systems, and much
of this would traditionally be seen as data rather than as
documents

n XML presents this data as documents, and the DOM
may be used to manage this data

n With the DOM, programmers can build documents,
navigate their structure, and add, modify, or delete
elements and content

34

The Document Object Model (DOM)

35

The DOM Structure Model

n The DOM presents documents as a hierarchy of
node objects, some with child nodes of various
types, and others as leaf nodes that cannot have
other nodes below them
n This fundamental idea is the basis behind the

structure of XML documents, and so it is very well
suited to XML applications

n XPath is also built on the same concept

36

n Some example DOM objects:
n Document - consisting of Element,

ProcessingInstruction, Comment,
DocumentType

n Element - consisting of Element, Text, Comment,
ProcessingInstruction, CDATASection,
EntityReference

n For a full set of DOM level 2 objects, see:
§ http://www.w3.org/TR/DOM-Level-2/

The DOM Structure Model

37

Example XML Document

<?xml version="1.0"?>
<book language="English">

<title>Introduction to XML and Web Technologies
</title>
<pages>542</pages>
<publisher>

<name>Addison Wesley</name>
<city>Sydney</city>

</publisher>
</book>

38Example DOM Representation
[Document Node]

[Nodelist]
[Element]

[Node]

[Nodelist]

[NamedNodeMap]

[Attr]
[Node]

[Element]
[Node]

Document Root

<book>

language = "English"

<title>

[Element]
[Node] <pages>

[Nodelist]

[Text]
[CharacterData]

[Node]
542

...

[Nodelist]
[Text]

[CharacterData]
[Node]

Introduction to XML
and Web Technologies

39

XML DOM Processing

XML
Document

Application (your code)

DOM Parser API DOM data structure
input create

call interact

40

Node Type Constants in XML::DOM
n XML::DOM has the following pre-defined

constants to refer to the types of nodes:
Constant Actual Value
UNKNOWN_NODE 0
ELEMENT_NODE 1
ATTRIBUTE_NODE 2
TEXT_NODE 3
CDATA_SECTION_NODE 4
ENTITY_REFERENCE_NODE 5
ENITITY_NODE 6
PROCESSING_INSTRUCTION_NODE 7
COMMENT_NODE 8
DOCUMENT_NODE 9
DOCUMENT_TYPE_NODE 10
...

XML_DECL_NODE 15
ATTLIST_DECL_NODE 16

41Some Example Sub-classes
of XML::DOM

n XML::DOM::Node
n Class describing any node in the DOM structure (i.e. the

XML tree)
n XML::DOM::NodeList

n Class describing a collection of nodes
n XML::DOM::Element

n Class describing any element
n XML::DOM::Attr

n Class describing any attribute
n XML::DOM::Text

n Class describing text nodes (these nodes that contain
the text between the start and end tags)

42Example Methods in
XML::DOM::Node

n Access data in the DOM object:
n getNodeType

n Returns the integer constant indicating the type of node
n getNodeName

n Returns the name of the node as a string
n getChildNodes

n Returns a list of all the children of the node
n getFirstChild

n Returns the first child of the node as an object

43

n getLastChild
n Returns the last child of the node as an object

n hasChildNodes
n Returns true if the node has child nodes

n getAttributes
n Returns an object containing all the attributes of the node

n getElementsByTagName("string")
n Returns a list of all the elements under the node with the

name "string"

Example Methods in
XML::DOM::Node

44

n Change the DOM object:
n insertBefore(newnode, referencenode)

n Insert the newnode immediately before the
referencenode

n replaceChild(newnode, oldnode)
n Replace oldnode with newnode

n removeChild(childnode)
n Delete childnode from the tree

n appendChild(childnode)
n Append childnode to the end of the node’s children

Example Methods in
XML::DOM::Node

45Example Methods in
XML::DOM::NodeList

n item(i)
n Returns the content of the ith item in the list of nodes;
i starts from 0

n getLength
n Returns the number of items in the nodelist

46

Methods in XML::DOM::Element

n XML::DOM::Element inherits from
XML::DOM::Node, and so has access to all the
methods available to XML::DOM::Node

n Most of the nodes in a DOM tree are of the
XML::DOM::Element type

47

n Example extra methods:
n getTagName

n Returns name of the element as a string
n setTagName(newname)

n Change the name of the element
n getAttribute(attributename)

n Returns the value of the attribute as a string
n setAttribute(attributename, value)

n Gives an attribute a new value
n removeAttribute(attributename)

n Remove an attribute from the element node

Methods in XML::DOM::Element

48

n XML::DOM::Text is the second most common
node type in a DOM tree (after
XML::DOM::Element)

n As with XML::DOM::Element,
XML::DOM::Text inherits from
XML::DOM::Node, and so also has access to all
of the methods available to XML::DOM::Node

Methods in XML::DOM::Text

49

n Examples of extra XML::DOM::Text methods:
n getData

n Returns the text contained in the node
n Can also use getNodeValue

n setData(text)
n Set the data in the node to the text given

Methods in XML::DOM::Text

50Our Course XML Document
<course>

<name>Bachelor of Science - Internet Computing</name>
<duration>3 years</duration>
<unit>

<title>ICT375 Advanced Web Programming</title>
<lecturer>

<surname language="English">Xie</surname>
<othernames language="English">Hong</othernames>
<email>H.Xie@murdoch.edu.au</email>

</lecturer>
</unit>
<unit>

<title>ICT283 Data Structures And Abstraction</title>
<lecturer>

<surname>Rai</surname>
<othernames>Shri</othernames>
<email>s.rai@murdoch.edu.au</email>

</lecturer>
</unit>

</course>

51

A Simple Example Using XML::DOM

use XML::DOM;
my $parser = new XML::DOM::Parser;
my $dom_obj;

die "Unable to parse XML document\n"
unless $dom_obj = $parser->parsefile("course.xml");

at this point the DOM tree is stored in $dom_obj

my @nodes = $dom_obj->getElementsByTagName("unit");
foreach $elem (@nodes)
{

if ($elem->getNodeType == ELEMENT_NODE) {
print $elem->getTagName, "\n";

}
Do other things with $elem
...

}

52

What the Script Does

§ Attempt to open and parse course.xml
§ If the document is not well-formed then stop

with an error message
§ If document is well-formed, then create a DOM

object and assign it to the variable $dom_obj
§ Get all elements with name “unit” from
$dom_obj and assign to the array @nodes

§ For each of those elements:
§ Print the tag name if it is an ELEMENT_NODE
§ Do other things...

53

Another Example Using XML::DOM

use XML::DOM;
my $dom_obj;
my $xml_file = shift; # access commandline argument
my $parser = new XML::DOM::Parser;

die "Unable to parse XML document\n"
unless $dom_obj = $parser->parsefile($xml_file);

at this point the DOM tree is stored in $dom_obj

foreach $elem ($dom_obj->getElementsByTagName("title"))
{

foreach $child ($elem->getChildNodes) {
print $child->getNodeValue;

}
print "\n";

}

54

§ Read a file name from the command line
§ Attempt to open and parse the file
§ If document is not well-formed then stop with an

error message
§ If document is well-formed, then create a DOM

object and assign it to the variable $dom_obj
§ Get all “title” elements from $dom_obj
§ For each of these:

§ Get all its child nodes, ie. the text nodes
containing the “title”, and print the value

What the Script Does

55

Text Nodes in Elements

n The text in the tags belongs to a child Text node
of an element node, instead of the element node
itself
n Eg: In the previous code, the text in the "title" tag

belongs to the child of the "title" node, instead of the
"title" node itself

56

Another Example Using XML::DOM

use XML::DOM;

my $dom_obj;
my $xml_file = shift;
my $parser = new XML::DOM::Parser;

die "Unable to parse XML document\n"
unless $dom_obj = $parser->parsefile($xml_file);

print $dom_obj->toString;

n Convert the whole constructed DOM object into
a string, and print it

57

use XML::DOM;
my $xml_file = shift;
my $parser = new XML::DOM::Parser;
my $course = $parser->parsefile($xml_file);
my @units = $course->getElementsByTagName("unit");
foreach $unit (@units){

foreach $child ($unit->getChildNodes){
if ($child->getNodeName eq "lecturer"){

$unit->removeChild($child);
}

}
}
print $course->toString;

n Remove every "lecturer" element from every
"unit" element

Another Example Using XML::DOM

58

An Example of Other XML Modules

use XML::XSLT;
my $xsl_file = "default.xsl";
my $xml_file = "course.xml";

my $xslt = XML::XSLT->new($xsl_file);

$xslt->transform($xml_file);
print $xslt->toString;

§ Open and parse the XSLT file default.xsl
§ Transform course.xml using XSLT templates

according to default.xsl
§ Print the result on screen

59XML Parsing and Processing
Using Node.js

§ Note: to this point we have used Perl to
demonstrate XML parsing and processing

§ However, with the Node.js xmldom package we
can parse and process XML documents using
the same DOM methods that we have seen
using Perl’s XML::DOM module

§ The DOMParser() method (from the xmldom
package) can be used to parse XML or HTML
source stored in a string into a DOM Document

60XML Parsing and Processing
Using Node.js

// import module
var xmldom = require("xmldom").DOMParser;

// constructs a new DOMParser object
var parser = new xmldom();
// constructor must return a new DOMParser object

// call parseFromString method to return Document object
var doc = parser.parseFromString(str, type);

Example:
var parser = new xmldom();
var doc = parser.parseFromString(XMLSource,

"application/xml");

61XML Parsing and Processing
Using Node.js

§ To parse a document:
§ Import the xmldom module
§ Use the DOMParser constructor to create an object

of that type
§ Use the parseFromString method to access and

process the document
§ The method has two parameters: str the data to be parsed,

and the MIME type (XML, HTML, or Text)
§ A Document object containing the parsed content is returned

if successful, otherwise an error

62

<catalog>
<book id="bk101">

<author>Gambardella, Matthew</author>
<title>XML Developer's Guide</title>
<genre>Computer</genre>
<price>44.95</price>
<publish_date>2000-10-01</publish_date>
<description>Creating Apps with XML.</description>

</book>
<book id="bk102">

<author>Ralls, Kim</author>
<title>Midnight Rain</title>
<genre>Fantasy</genre>
<price>5.95</price>
<publish_date>2000-12-16</publish_date>
<description>Architect Battles.</description>

</book>
</catalog>

Example XML File: books.xml

63

// import parser from xmldom package
var xmldom = require('xmldom').DOMParser;
var fs = require('fs');

var parser, doc, targetNodes, i, targetObj, fcObj;

// use fs to read xml document
fs.readFile('books.xml', 'utf-8', function (err, data) {

if (err) { throw err; }

// construct parser
parser = new xmldom();
// call method to parse document - not the type
doc = parser.parseFromString(data, 'application/xml');

// use DOM Node method
targetNodes = doc.getElementsByTagName('genre');

Example: Reading from XML File

64

// go through all returned nodes
for (i in targetNodes) {

// process current ith node
targetObj = targetNodes[i];
// if it has a firstchild
if (targetObj.firstChild) {

// obtain the node value
fcObj = targetObj.firstChild.nodeValue;
// compare this to the target genre
if (fcObj === 'Computer') {

// display book 'title' corresponding to target
console.log(targetObj.parentNode.

getElementsByTagName('title')[0].
firstChild.nodeValue);

}// end fcObj if
}// end targetObj if

}
); // end readFile function

Example: Reading from XML File

65

§ Open a file as a string using fs.readFile
§ Use xmldom to parse the XML into a DOM

object using parser.parseFromString
§ This returns a DOM object to traverse the tree

using common DOM methods like
getElementsByTagName
§ We can use such methods to find elements and

perform whatever task we require
§ In the example, the script displays all book titles

where the genre is listed as 'Computer'

Example: Reading from XML File

66Writing DOM Tree to String
Using XMLSerializer

§ To write the DOM tree back to a string we use
XMLSerializer

// Constructs a new XMLSerializer object
var serializer = new XMLSerializer();

// use the serializeToString method
var str = serializer.serializeToString(doc);

// Serializes doc into a string using an XML
// serialization
// Throws TypeError exception if doc is not a Node
// or an Attr object

67

var fs = require('fs');
var DOMParser = require('xmldom').DOMParser;
var XMLSerializer = require('xmldom').XMLSerializer;

fs.readFile("myFile.xml", "utf-8", function(err, data) {
// CREATE/PARSE XML OBJECT FROM STRING
var CC = new DOMParser().parseFromString(data);

// SET "test" VALUE (<name>default</name> TO <name>test</name>)
//CC.getElementsByTagName("name")[0].childNodes[0].nodeValue = "test";
CC.getElementsByTagName("name")[0].childNodes[0].data = "test";
// THIS OUTPUTS "test"
console.log(CC.getElementsByTagName("name")[0].childNodes[0].nodeValue);

// SERIALIZE TO STRING
var xmlString = new XMLSerializer().serializeToString(CC);
console.log(xmlString);
// OR WRITE TO FILE USING fs.writeFile

});

Example: Using XMLSerializer

68

References

n Perl online documentation for XML::DOM
n For other XML packages, search www.cpan.org
n Node.js documentation for xmldom:
n https://www.npmjs.com/package/xmldom

Ok, that is the link to XML!

n The whole “web development” scene is based
on many technologies that work together, or
alongside each other

n Of necessity, many parts of the picture are
based on similar methods and techniques
n The DOM (Document Object Model) is one of the

links connecting these technologies
n We cannot cover everything!

n But we can introduce, and show the links between
the technologies … then its up to you!

XML Parsing
and Processing
in Other
Programming
Languages
Lecture 7 (B)

§ In the scheme of what we are doing in this
unit:
§ A major part of developing an XML solution is to

design and implement software to deal with the
information in XML documents

§ To do this, we must know how to parse and
process XML documents

§ For us to select the appropriate development
environment to use, we should have an idea
how much support different languages have for
XML parsing and processing

2Learning Objectives

Lecture Outline 3

§ An overview of XML parsers and
processors available in other programming
languages besides Perl

§ Widely-used languages with good XML
support

§ DOM versus SAX approaches
§ Examples of available tool-kits

§ In the previous lecture, we predominantly
used Perl (with some Node.js) examples to
illustrate XML parsing and processing

§ We did so because:
§ Perl is the most powerful language around for

text processing, which at the introductory level
should be what students concentrate on in
order to understand XML structures

§ Perl has a very simple set of modules for XML
parsing, and it is complete enough to serve our
needs

4Programming Language Support
for XML in Perl

Programming Language Support
for XML in Other Languages

5

§ The above reasons do not mean we ignore
available support for XML in other
programming languages

§ There is comprehensive support for XML in
other languages like Java, C/C++, and
Microsoft's C# language

JAVA’s Support for XML 6

n Some example Java XML APIs:
n Sun’s Java APIs for XML (JAX)
n Xerces parser from Apache XML Project
n IBM's XML4J

n See other examples at:
n http://www.xml.com/pub/rg/Java
n http://www.xml.com/pub/rg/Java_Parsers

Example Code from JAX 7

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();
Document document = builder.parse("priceList.xml");

NodeList list = document.getElementsByTagName("name");
Node thisNode = list.item(0);// loop through list
Node thisChild = thisNode.getChildNode();
if (thisNode.getFirstChild() instanceof org.w3c.dom.TextNode){

String data = thisNode.getFirstChild().getData();
}
if (data.equals("Mocha Java")) {

// new node will be inserted before Mocha Java
Node newNode = document.createElement("coffee");
Node nameNode = document.createElement("name");
TextNode textNode = document.createTextNode("Kona");
nameNode.appendChild(textNode);

Node priceNode = document.createElement("price");
TextNode tpNode = document.createTextNode("13.50");
priceNode.appendChild(tpNode);

newNode.appendChild(nameNode);
newNode.appendChild(priceNode);
thisNode.insertBefore(newNode, thisNode);

}

§ Note that the DOM
method names are
the same as the
Node and Perl
XML::DOM APIs

§ These names are
defined in DOM
specification, and
are language
independent

Code Source:
http://java.sun.com/webservices
/docs/ea2/tutorial/doc/IntroWS5
.html#63986

8

§ C and C++ also have a large support base
for XML
§ Most core system-based processes are still

implemented in C/C++
n The popular Expat parser by James Clark is

implemented in C

Programming Language Support
for XML in Other Languages

9

§ For scripting languages other than Perl,
Python has gained popularity as a language
for XML programming

§ Most languages mentioned, such as C, C#,
Java, and Python, have major libraries
supporting XML

Programming Language Support
for XML in Other Languages

10

§ JavaScript is also another popular choice
for writing XML parsers and processors

§ There is a large base of JavaScript
programmers who picked up the language
through web-page design
§ Most XML documents are directed towards

being served over the Web

Programming Language Support
for XML in Other Languages

11

§ JavaScript is very lightweight once a
browser is started and it doesn’t involve
large resource requirements when starting
up and processing

§ Until recently, JavaScript did not have the
large amount of support, in terms of data
types and libraries, as some other
programming languages
§ Due to Node.js, JavaScript libraries are now

quite numerous, but support can still be a bit
limited

Programming Language Support
for XML in Other Languages

DOM vs SAX 12

§ In the last lecture, we looked at the parsing
and processing approach using DOM

§ Another approach (briefly mentioned
previously) for parsing and processing XML
is SAX (Simple API for XML), which is just
as popular as the DOM approach
n Written by David Megginson

(http://www.saxproject.org/)

The SAX Approach
13

§ SAX approaches parsing in the same vein
as Expat (and as a consequence Perl’s
XML::Parser and the Node.js module
node-xml from the last lecture)

§ SAX provides facilities to define event
handlers for handling different parts of the
XML document as the parser encounters
them

14

XML
Document

Application (your code)

SAX Parser API
input

Specify event handlers

Event Handlers

call

XML
Document

Application (your code)

DOM Parser API DOM data structure
input create

call interact

DOM vs SAX

XML Processing with SAX

§ A parser which implements SAX (i.e. a SAX
Parser) functions as a stream parser, with
an event-driven API

§ The user defines a number of callback
methods that will be called when events
occur during parsing

§ These include SAX events for:
§ XML Text nodes
§ XML Element nodes
§ XML Processing Instructions
§ XML Comments

15

§ Events are fired when each of these XML
features are encountered, and again when
the end of the features are encountered

§ XML attributes are provided as part of the
data passed to element events

§ SAX parsing is uni-directional
§ That is, previously parsed data cannot be re-

read without starting the whole parsing
operation from the very beginning

16XML Processing with SAX

n The SAX approach has its advantages
because it:
n Is efficient in dealing with large files

n Does not build a large memory map of the whole
document

n Only parses what it has been instructed to parse
n Therefore, it can begin processing even before the

parser finishes reading the whole document eg: an
event handler can start a new thread

17DOM vs SAX

n The SAX approach has its advantages
because it:
n Concentrates on the content rather than the

layout
n When there are a lot of external API calls (eg:

database specific system calls) your event
handlers can deal with the data

18DOM vs SAX

DOM vs SAX

n The DOM approach has its advantages
because it:
n Returns a data-structure that a programmer can

store and easily manipulate
n Encapsulates all information about the structure

of the document, some of which SAX does not
return (eg: order of attributes)

19

A Question of Efficiency

n The SAX approach is an important part of
XML parsing due to efficiency
n It is an efficient approach when parsing very

large documents, especially when you only want
a small part of the data

n DOM on the other hand is also important due
to the data and object-centric way we
approach most programming today
n We need to have adequate facilities to store and

easily manipulate data

20

Popular XML Parsing
Tool-kits Today

n Those which have a long history behind
them, upon which many new XML software
libraries are built:
n Expat by James Clark

(www.jclark.com/xml/expat.html)
n SAX: not defined in any language, and has

implementations in Perl, Java, C/C++ and many
other languages

n XP: also by James Clark
(www.jclark.com/xml/xp/index.html)

21

n Continued:
n Lark by Tim Bray, in Java

(www.textuality.com/Lark/)
n LT XML by Language Technology Group at

University of Edinburg
(www.ltg.ed.ac.uk/software/xml/)

n XML::Parser by Larry Wall (see Perl
documentation)

n SXP: Silfide XML Parser
(www.loria.fr/projets/XSilfide/EN/sxp/

22Popular XML Parsing
Tool-kits Today

n Widely used today:
n XML for Java (XML4J) by IBM AlphaWorks -

widely used and conforms well to W3C
standards (www.alphaworks.ibm.com/tech/xml4j)

n Microsoft XML Parser (MSXML) - implemented
as a COM component
(msdn.microsoft.com/xml/general/xmlparser.asp)

n Ælfred in Java concentrates on optimising
speed / size, especially good to use in applets
(http://www.opentext.com/services/content_management_ser
vices/xml_sgml_solutions.html#aelfred_and_sax)

23Popular XML Parsing
Tool-kits Today

n Widely used today:
n Java Standard Extensions for XML by Sun

Microsystems (java.sun.com/products/xml)
n Perl XML modules

(http://cpan.valueclick.com/modules/by-
module/XML/)

n Python parser (www.python.org/topics/xml)
n Node.js libraries: node-xml, xmldom, xml2js
n … and many, many more

24Popular XML Parsing
Tool-kits Today

What Language Should
You Choose?

n Depends on trade-offs between:
n Whether the languages and their libraries have

support for features which will enhance your
particular applications/solutions

n What languages you and your project team are
familiar/comfortable working with

n What language the developers in the problem
area is mostly using - for better integration

n What resources (especially software) your
organization owns, has access to, or is planning
to obtain - again for integration

25

Reference

n XML can be validated at:
n https:xmlvalidation.com

26

